Skip to main content

tikz for flow charts


\documentclass{article}
\usepackage{tikz}
\usetikzlibrary{shapes,shadows,arrows}
\usetikzlibrary{backgrounds}
\begin{document}

%line thickness styles: ultra thin, very thin, (thin), semithick, thick, very thick, ultra thick
%line dash styles: loosely dashed, densely dashed, loosely dotted, densely dotted

\tikzstyle{decision}=[diamond,draw,fill=gray!50]
%\tikzstyle{arrow}=[draw,-latex',very thick]
\tikzstyle{arrow}=[draw,-latex']
\tikzstyle{line}=[draw]
\tikzstyle{cloud}=[draw=gray!0,very thick,block,rounded corners,fill=gray!2, minimum width=15mm, minimum height=15mm,node distance=5em]
\tikzstyle{vagueblock}=[draw=gray!30,rectangle,rounded corners,fill=gray!30,text centered, minimum width=15mm, minimum height=15mm,node distance=5em]
\tikzstyle{block}=[draw,rectangle,rounded corners,fill=gray!30,text centered, minimum width=15mm, minimum height=15mm,node distance=5em]
\tikzstyle{empblock}=[draw,rectangle,rounded corners,minimum width=8cm,minimum height=5cm]
\tikzstyle{grayblock}=[draw,fill=gray!30,rectangle,rounded corners,minimum width=7.5cm,minimum height=4.5cm]
\begin{tikzpicture}

%shapes
\node[vagueblock](AAA){\parbox{7cm}{\centering Abdominal aorta aneurysm patients \\Patients=355}};
\node[block,below of=AAA,xshift=2cm,yshift=-1cm](AAAfu){\parbox{3cm}{\centering Follow-up patients \\ Patients=149}};
\node[block,below of=AAA,xshift=-2cm,yshift=-1cm](AAAop){\parbox{3cm}{\centering Post-op patients\\ Patients=206}};
%\node[empblock,below of=AAA,yshift=-0.4cm](emp){};
\begin{scope}[on background layer]
\node[grayblock,below of=AAA,yshift=-0.4cm](emp){};
\end{scope}

\node[block,left of=AAA,xshift=-5cm](Controls){\parbox{4cm}{\centering Healthy controls \\Patients=196}};

\node[cloud,below of=Controls,yshift=-1cm](TCC){\parbox{4cm}{\centering Nested case-control\\ Endpoint: TCC}};
\node[cloud,above of=Controls,yshift=1cm](C4BP){\parbox{4cm}{\centering Nested case-control\\ Endpoint: C4BP}};
\node[cloud,above of=AAA,yshift=1cm](size){\parbox{7cm}{\centering Retroperspective\\ Endpoint: Aneurysm size}};
\node[cloud,below of=AAA,yshift=-4cm](followup){\parbox{7cm}{\centering Follow-up study \\ Endpoints: Survival, aneurysm size, C4BP}};

\path[arrow](size) -- (emp);

\path[arrow](TCC)--(AAAop);
\path[arrow](TCC)--(Controls);

\path[arrow](C4BP)--(emp);
\path[arrow](C4BP)--(Controls);

\path[arrow](followup)--(AAAfu);

\end{tikzpicture}
\end{document}

Comments

Popular posts from this blog

HackRF on Windows 8

This technical note is based on an extract from thread. I have made several changes and added recommendations. I have experienced lot of latency using GnuRadio and HackRF on Pentoo Linux, so I wanted to try out GnuRadio on Windows.



HackRF One is a transceiver, so besides SDR capabilities, it can also transmit signals, inkluding sweeping a given range, uniform and Gaussian signals. Pentoo Linux provides the most direct access to HackRF and toolboxes. Install Pentoo Linux on a separate drive, then you can use osmocom_siggen from a terminal to transmit signals such as near-field GSM bursts, which will only be detectable within a meter.









Installation of MGWin and cmake: Download and install the following packages:
- MinGW Setup (Go to the Installer directory and download setup file)
- CMake (I am using CMake 3.2.2 and I installed it in C:\CMake, this path is important in the commands we must send in the MinGW shell)
Download and extract the packages respectively in the path C:\MinGW\msys\…

Example: Beeswarm plot in R

library(foreign)

data <- read.dta("C:/Users/hellmund/Documents/MyStataDataFile.dta")

names(data)

install.packages('beeswarm')

library(beeswarm)

levels(data$group)

png(file="C:/Users/hellmund/Documents/il6.png", bg="transparent")

beeswarm(data$il6~data$group,data=data, method=c("swarm"),pch=16,pwcol=data$Gender,xlab='',ylab='il6',ylim=c(0,20))

legend('topright',legend=levels(data$Gender),title='Gender',pch=16,col=2:1)

boxplot(data$il6~data$group, data=data, add = T, names = c("","",""), col="#0000ff22")

dev.off()

Alder/korrekt århundrede udfra cpr nummer

De fleste, der arbejder med registre eller databaser, står ofte med problemstillingen, at alder er uoplyst, medens cpr-nummer er kendt. Hvordan regner man den ud?

Følgende regel er gældende: Hvis syvende ciffer er 0, 1, 2 eller 3 er man født i det 20. århunderede (1900-tallet) Ligeledes, hvis syvende ciffer er 4 eller 9, og årstallet (femte og sjette ciffer) er større end eller lig 37.

Endelig er man født i det 19. århundrede (1800-tallet) hvis syvende ciffer er 5, 6, 7 eller 8 og årstallet er større end eller lig 58.

Nedenfor finder du eksempel i SAS kode: En lille makro, der udover fødselsdato også udregner køn samt den præcise alder givet datovariabel.

Kilde: Opbygning af CPR nummeret, cpr.dk


proc format library=work;
value gender
0="Female"
1="Male"
;
run;

%macro agefromCPR(cpr,datevar=inddto,birthvar=birth,agevar=age);
dy_temp=input(substrn(&cpr,1,2),2.);
mt_temp=input(substrn(&cpr,3,2),2.);
yr_temp=input(substrn(&cpr,5,2),2.);
lr_temp=inp…