Skip to main content

Forecasting

Forecasting for the Pharmaceutical Industry, Models for New Product and In-Market Forecasting and How to Use Them af Arthur G. Cook fokuseres på balance samt korrekt vægtning mellem proces og kvantitativ modellering. Når balancen er korrekt er valg af prediktionsmetode mindre væsentlig. Det er også min erfaring. Der skal gerne være en del ligheder i prediktioner fra forskellige typer af modeller, når fremtiden kan predikteres og vores forudsigelser er tæt på sandheden.
Det er  under ingen omstændigheder smart at benytte dyre komplekse modeller, hvis datagrundlaget er tvivlsomt: Garbage in, gospel out.

Comments

Popular posts from this blog

HackRF on Windows 8

This technical note is based on an extract from thread. I have made several changes and added recommendations. I have experienced lot of latency using GnuRadio and HackRF on Pentoo Linux, so I wanted to try out GnuRadio on Windows.



HackRF One is a transceiver, so besides SDR capabilities, it can also transmit signals, inkluding sweeping a given range, uniform and Gaussian signals. Pentoo Linux provides the most direct access to HackRF and toolboxes. Install Pentoo Linux on a separate drive, then you can use osmocom_siggen from a terminal to transmit signals such as near-field GSM bursts, which will only be detectable within a meter.









Installation of MGWin and cmake: Download and install the following packages:
- MinGW Setup (Go to the Installer directory and download setup file)
- CMake (I am using CMake 3.2.2 and I installed it in C:\CMake, this path is important in the commands we must send in the MinGW shell)
Download and extract the packages respectively in the path C:\MinGW\msys\…

Example: Beeswarm plot in R

library(foreign)

data <- read.dta("C:/Users/hellmund/Documents/MyStataDataFile.dta")

names(data)

install.packages('beeswarm')

library(beeswarm)

levels(data$group)

png(file="C:/Users/hellmund/Documents/il6.png", bg="transparent")

beeswarm(data$il6~data$group,data=data, method=c("swarm"),pch=16,pwcol=data$Gender,xlab='',ylab='il6',ylim=c(0,20))

legend('topright',legend=levels(data$Gender),title='Gender',pch=16,col=2:1)

boxplot(data$il6~data$group, data=data, add = T, names = c("","",""), col="#0000ff22")

dev.off()

Example: Business cards typeset with LaTeX

So you enjoy the quality of a professional typesetting system? You got Avery labels, a working MikTeX and the ticket package installed...
You might find some assistance from a half criminal paranoid zealot system administrator, willing to guide you through a dinosaur kingdom of TeX ... but that kind of assistance might also just leave you with nothing.

It was easy to get the layout of the labels with the option zw32010, but how about page margins? I tried to set things straight with the layouts package (\usepackage{layouts}\currentpage \pagedesign), but then there was still some unwanted white space and margins...

To make things less complicated I decided to make a single card. The solution is a hack because it needs customization (with voffset and hoffset as you see n the TeX code below) but the adjustment is more straightforward, especially if you use the boxed option with ticket.

The card was converted to png with Ghostscript and I could easily print the business cards with Averys …