Skip to main content

Charlson's Comorbidity Index as SAS Macro

A Canadian version of Charlson's Comorbidity Index implemented as a SAS macro for application on Danish national register data.


The macro traverses main diagnosis and bidiagnoses recorded at time of hospitalization, defines 17 indicators and calculates an unweighted comorbidity index.

A patient's CCI is calculated across records using indicators (and weights) from all previous hospitalizations. CCI is a growing index.


Here is an additional and more traditional calculation of Charlson's Comorbidity Index including 19 indicators and weights from 1 to 6. Charlson's Comorbidity Index is defined as the sum of all indicators. The calculation assumes access to all diagnoses on a single record, which often includes both a main diagnosis, several bi- and auxillary diagnoses.


Cross-National Comparative Performance of Three Versions of the ICD-10 Charlson Index
Sundararajan et al, Medical Care, V45, N12, December 2007 (1210-1215)


Popular posts from this blog

HackRF on Windows 8

This technical note is based on an extract from thread. I have made several changes and added recommendations. I have experienced lot of latency using GnuRadio and HackRF on Pentoo Linux, so I wanted to try out GnuRadio on Windows.

HackRF One is a transceiver, so besides SDR capabilities, it can also transmit signals, inkluding sweeping a given range, uniform and Gaussian signals. Pentoo Linux provides the most direct access to HackRF and toolboxes. Install Pentoo Linux on a separate drive, then you can use osmocom_siggen from a terminal to transmit signals such as near-field GSM bursts, which will only be detectable within a meter.

Installation of MGWin and cmake: Download and install the following packages:
- MinGW Setup (Go to the Installer directory and download setup file)
- CMake (I am using CMake 3.2.2 and I installed it in C:\CMake, this path is important in the commands we must send in the MinGW shell)
Download and extract the packages respectively in the path C:\MinGW\msys\…

Example: Beeswarm plot in R


data <- read.dta("C:/Users/hellmund/Documents/MyStataDataFile.dta")





png(file="C:/Users/hellmund/Documents/il6.png", bg="transparent")

beeswarm(data$il6~data$group,data=data, method=c("swarm"),pch=16,pwcol=data$Gender,xlab='',ylab='il6',ylim=c(0,20))


boxplot(data$il6~data$group, data=data, add = T, names = c("","",""), col="#0000ff22")

Example: Business cards typeset with LaTeX

So you enjoy the quality of a professional typesetting system? You got Avery labels, a working MikTeX and the ticket package installed...
You might find some assistance from a half criminal paranoid zealot system administrator, willing to guide you through a dinosaur kingdom of TeX ... but that kind of assistance might also just leave you with nothing.

It was easy to get the layout of the labels with the option zw32010, but how about page margins? I tried to set things straight with the layouts package (\usepackage{layouts}\currentpage \pagedesign), but then there was still some unwanted white space and margins...

To make things less complicated I decided to make a single card. The solution is a hack because it needs customization (with voffset and hoffset as you see n the TeX code below) but the adjustment is more straightforward, especially if you use the boxed option with ticket.

The card was converted to png with Ghostscript and I could easily print the business cards with Averys …