Skip to main content

Modeling gender and age adjusted incidence rates

National Health Institute (NHI) provides a tool box for calculation of cancer incidence and percentage change. Their algorithm for Jointpoint Trend Analysis is well-documented but does not provide the best tool at hand for most problems. The normal approximation is not the most optimal choice for situations with a low incidence rate in which I would recommend to apply modern logistic regression algorithms which are far more versatile. In the logistic regression model, either direct or indirect incidence rates are modeled using population numbers by age, year, and gender and number of cases specific to the given year, gender, and age group. There are no missing data if the registry is complete, compared to the normal model in which we cannot use data points for years/age-gender groups with no events and perform simulation to get approximate estimates.


The difference between careful parametrization in a binomial regression model and the plug-and-play functionality of the NHI suite becomes obvious in an example in which we look at cancers in children. Data source: NORDCAN

Logistic regression models. Joint point model (left) using stepwise linear gender specific regression models and polynomial models (right) using gender specific polynomial regression models.

Graphs with gender specific 95% prediction limits

R-script Data Extraction
SAS program

Joint Point Model based on software from NIH
The estimation procedure does not allow zero-counts, which introduces bias.

Furthermore, errors are approximate normal distributed.

The logistic regression model predicts a total of 190 cancer cases during the period 1979-2014, whereas the Jointpoint trend program from NHI predicts 158 cases of cancer when adjusting for calendar year. Binomial model estimates a total combined incidence rate of 0.57 (per 100,000) corrected for calendar year, whereas the Jointpoint trend analysis program yields an incidence rate of 0.47 (per 100,000). We observe a total of 33,679,014 person years.
We have used actual connective tissue cancer incidence counts for Danes age 0 to 24 from the NORDCAN register of gender specific incidence rates with a total of 189 cases in the period 1979-2014.


Popular posts from this blog

HackRF on Windows 8

This technical note is based on  an extract from thread . I have made several changes and added recommendations. I have experienced lot of latency using GnuRadio and HackRF on Pentoo Linux, so I wanted to try out GnuRadio on Windows. HackRF One is a transceiver, so besides SDR capabilities, it can also transmit signals, inkluding sweeping a given range, uniform and Gaussian signals. Pentoo Linux provides the most direct access to HackRF and toolboxes. Install Pentoo Linux on a separate drive, then you can use osmocom_siggen from a terminal to transmit signals such as near-field GSM bursts, which will only be detectable within a meter. Installation of MGWin and cmake: Download and install the following packages: - MinGW Setup (Go to the Installer directory and download setup file) - CMake (I am using CMake 3.2.2 and I installed it in C:\CMake, this path is important in the commands we must send in the MinGW shell) Download and extract the packages

Alder/korrekt århundrede udfra cpr nummer

De fleste, der arbejder med registre eller databaser, står ofte med problemstillingen, at alder er uoplyst, medens cpr-nummer er kendt. Hvordan regner man den ud? Følgende regel er gældende: Hvis syvende ciffer er 0, 1, 2 eller 3 er man født i det 20. århunderede (1900-tallet) Ligeledes, hvis syvende ciffer er 4 eller 9, og årstallet (femte og sjette ciffer) er større end eller lig 37. Endelig er man født i det 19. århundrede (1800-tallet) hvis syvende ciffer er 5, 6, 7 eller 8 og årstallet er større end eller lig 58. Nedenfor finder du eksempel i SAS kode: En lille makro, der udover fødselsdato også udregner køn samt den præcise alder givet datovariabel. Kilde: Opbygning af CPR nummeret, proc format library=work; value gender 0="Female" 1="Male" ; run; %macro agefromCPR(cpr,datevar=inddto,birthvar=birth,agevar=age); dy_temp=input(substrn(&cpr,1,2),2.); mt_temp=input(substrn(&cpr,3,2),2.); yr_temp=input(substrn(&cpr,5,2),

Comorbidity indexes in SQL

Generating Elixhauser comorbidity index from Danish National Health Register as relational database. ( ICD 10 Coding  in SAS) A lookup-table based version of Charlson comorbidity index I made in SQL. A similar approach can be applied to Elixhauser. SELECT V_CPR, MAX(EI1)+MAX(EI2)+MAX(EI3)+MAX(EI4)+MAX(EI5)+ MAX(EI6)+MAX(EI7)+MAX(EI8)+MAX(EI9)+MAX(EI10)+ MAX(EI11)+MAX(EI12)+MAX(EI13)+MAX(EI14)+MAX(EI15)+ MAX(EI16)+MAX(EI17)+MAX(EI18)+MAX(EI19)+MAX(EI20)+ MAX(EI21)+MAX(EI22)+MAX(EI23)+MAX(EI24)+MAX(EI25)+ MAX(EI26)+MAX(EI27)+MAX(EI28)+MAX(EI29)+MAX(EI30)+MAX(EI31) AS Elixhauser FROM (SELECT V_CPR, -- Congestive Heart Failure CASE WHEN DIAG LIKE 'DI099%' OR DIAG LIKE 'DI110%' OR DIAG LIKE 'DI130%' OR DIAG LIKE 'DI132%' OR DIAG LIKE 'DI255%' OR DIAG LIKE 'DI420%' OR DIAG LIKE 'DI425%' OR DIAG LIKE 'DI426%' OR DIAG LIKE 'DI427%' OR DIAG LIKE 'DI428%' OR DIAG LIKE 'DI429%' OR D