Skip to main content

Illustrative plots and tables (SAS macro)

Basic SAS macros for basic summary statistics and illustrative plots.

Features ttests, Van der Waerden and Wilcoxon tests for continuous variables and both chisq and Fisher tests for categorical variables.

Overall tests may be based on accumulated measures such as average integrated values, which are interpretable on original scale:
%macro averageIntegral(values,timepoints,intlength,retval);
&retval=(0
%local count;
 %let count=0;
 %let time_old=0;
 %let val_old=0;
 %do %while(%qscan(&values,&count+1,%str( )) ne %str());
 %let time=%scan(&timepoints,&count+1,%str( )); 
 %let val=%scan(&values,&count+1,%str( )); 
 %if &count GT 0 %then +(&time-&time_old)*(&val_old+&val)/2;
 %let time_old=&time;
 %let val_old=&val;
 %let count=%eval(&count+1);
 %end;
 )/(&intlength*1.0);
%mend;


Table output for continuous data (contrasts between groups are evaluated using t-tests, van der waerden and Wilcoxon)



categorical data table (both chisq and Fishers test are displayed)



T-tests for contrasts, estimates and confidence limits. Inserted box displays result for overall comparison (in this case average integrated NRS score).

The SGPlot Procedure

Macro file download link

Comments

Popular posts from this blog

HackRF on Windows 8

This technical note is based on an extract from thread. I have made several changes and added recommendations. I have experienced lot of latency using GnuRadio and HackRF on Pentoo Linux, so I wanted to try out GnuRadio on Windows.



HackRF One is a transceiver, so besides SDR capabilities, it can also transmit signals, inkluding sweeping a given range, uniform and Gaussian signals. Pentoo Linux provides the most direct access to HackRF and toolboxes. Install Pentoo Linux on a separate drive, then you can use osmocom_siggen from a terminal to transmit signals such as near-field GSM bursts, which will only be detectable within a meter.









Installation of MGWin and cmake: Download and install the following packages:
- MinGW Setup (Go to the Installer directory and download setup file)
- CMake (I am using CMake 3.2.2 and I installed it in C:\CMake, this path is important in the commands we must send in the MinGW shell)
Download and extract the packages respectively in the path C:\MinGW\msys\…

Example: Beeswarm plot in R

library(foreign)

data <- read.dta("C:/Users/hellmund/Documents/MyStataDataFile.dta")

names(data)

install.packages('beeswarm')

library(beeswarm)

levels(data$group)

png(file="C:/Users/hellmund/Documents/il6.png", bg="transparent")

beeswarm(data$il6~data$group,data=data, method=c("swarm"),pch=16,pwcol=data$Gender,xlab='',ylab='il6',ylim=c(0,20))

legend('topright',legend=levels(data$Gender),title='Gender',pch=16,col=2:1)

boxplot(data$il6~data$group, data=data, add = T, names = c("","",""), col="#0000ff22")

dev.off()

Alder/korrekt århundrede udfra cpr nummer

De fleste, der arbejder med registre eller databaser, står ofte med problemstillingen, at alder er uoplyst, medens cpr-nummer er kendt. Hvordan regner man den ud?

Følgende regel er gældende: Hvis syvende ciffer er 0, 1, 2 eller 3 er man født i det 20. århunderede (1900-tallet) Ligeledes, hvis syvende ciffer er 4 eller 9, og årstallet (femte og sjette ciffer) er større end eller lig 37.

Endelig er man født i det 19. århundrede (1800-tallet) hvis syvende ciffer er 5, 6, 7 eller 8 og årstallet er større end eller lig 58.

Nedenfor finder du eksempel i SAS kode: En lille makro, der udover fødselsdato også udregner køn samt den præcise alder givet datovariabel.

Kilde: Opbygning af CPR nummeret, cpr.dk


proc format library=work;
value gender
0="Female"
1="Male"
;
run;

%macro agefromCPR(cpr,datevar=inddto,birthvar=birth,agevar=age);
dy_temp=input(substrn(&cpr,1,2),2.);
mt_temp=input(substrn(&cpr,3,2),2.);
yr_temp=input(substrn(&cpr,5,2),2.);
lr_temp=inp…