Skip to main content

Crowd monitoring and performance analysis

A job for a statistician in the era of data science driven progress within businesses reflecting all aspects of life: Crowd and performance analysis.

Using the Microsoft Azure API for analysis of crowd monitoring input pictures. Measuring levels of general emotions like happiness, sadness, surprise, anger, disgust, fear, contempt and neutral as well as gender, age and measures like baldness. Combining from several cameras to measure levels over time comparing with set list, place in crowd, mood on stage and background variables like size of venue, city and socio-demographic info. You can name a countless number of applications in a very dynamic and business oriented context.


Crowd displaying surprise, happiness and neutral. Ages 34, 50, 51, 28, 29 and 22.


Andy Clayton on stage displaying 71% neutral and 28.9% sadness while Bono is 98% happy.

Comments

Popular posts from this blog

HackRF on Windows 8

This technical note is based on an extract from thread. I have made several changes and added recommendations. I have experienced lot of latency using GnuRadio and HackRF on Pentoo Linux, so I wanted to try out GnuRadio on Windows.



HackRF One is a transceiver, so besides SDR capabilities, it can also transmit signals, inkluding sweeping a given range, uniform and Gaussian signals. Pentoo Linux provides the most direct access to HackRF and toolboxes. Install Pentoo Linux on a separate drive, then you can use osmocom_siggen from a terminal to transmit signals such as near-field GSM bursts, which will only be detectable within a meter.









Installation of MGWin and cmake: Download and install the following packages:
- MinGW Setup (Go to the Installer directory and download setup file)
- CMake (I am using CMake 3.2.2 and I installed it in C:\CMake, this path is important in the commands we must send in the MinGW shell)
Download and extract the packages respectively in the path C:\MinGW\msys\…

Example: Beeswarm plot in R

library(foreign)

data <- read.dta("C:/Users/hellmund/Documents/MyStataDataFile.dta")

names(data)

install.packages('beeswarm')

library(beeswarm)

levels(data$group)

png(file="C:/Users/hellmund/Documents/il6.png", bg="transparent")

beeswarm(data$il6~data$group,data=data, method=c("swarm"),pch=16,pwcol=data$Gender,xlab='',ylab='il6',ylim=c(0,20))

legend('topright',legend=levels(data$Gender),title='Gender',pch=16,col=2:1)

boxplot(data$il6~data$group, data=data, add = T, names = c("","",""), col="#0000ff22")

dev.off()

Real world split-plot designs

Google Earth picture from a blog on statistics. A real world example near Christchurch (NZ) of a split-plot design. Today things have completely changed on location as the forest has grown considerably. Google Earth coordinate link.